simulation of orthogonal machining process of titanium alloy (ti-6al-4v) by finite element method
Authors
abstract
0
similar resources
Simulation of Plastic Deformation Behavior of Ti-6Al-4V Alloy by Finite Element Method
Mechanical properties of alloys have a strong relation with microstructure and determination of their behavior can lead to multiple advantages. To obtain this goal, finite element method )FEM( is one of the best ways. In this study a series of experiments were carried out on the produced Ti-6Al-4V to obtain its mechanical characteristics and to prepare it for photographing in micro dimensions. ...
full textPrecision Grinding of Titanium (Ti-6Al-4V) Alloy Using Nanolubrication
In this current era of competitive machinery productions, the industries are designed to place more emphasis on the product quality and reduction of cost whilst abiding by the pollution-preventing policy. In attempting to delve into the concerns, the industries are aware that the effectiveness of existing lubrication systems must be improved to achieve power-efficient and pollutionpreventing ma...
full textManufacturing of Femoral Heads from Ti-6Al-4V Alloy with High Speed Machining: 3D Finite Element Modelling and Experimental Validation
Titanium alloys are used for the manufacturing of femoral heads for orthopaedic implants. Poor machinability of these materials, especially at high speeds, creates the need for more detailed investigations on this subject. The at hand study analyzes the construction of 3D Finite Element Method (FEM) models pertaining to the manufacturing of femoral heads made from Ti-6Al-4V. For this purpose a ...
full textThe Effect of Nose Radius on Cutting Force and Temperature during Machining Titanium Alloy (Ti-6Al-4V)
This paper presents a study the effect of nose radius (Rz-mm) on cutting force components and temperatures during the machining simulation in an orthogonal cutting process for titanium alloy (Ti-6Al-4V). The cutting process was performed at various nose radiuses (Rz-mm) while the depth of cut (d-mm), feed rate (fmm/tooth) and cutting speed (vc-m/ min) were remained constant. The main cutting fo...
full textMulti-objective process optimization for micro-end milling of Ti-6Al-4V titanium alloy
Micro-end milling is one of the promising methods for rapid fabrication of features with 3D complex shapes. However, controlling the micro-end milling process to obtain the desired results is much harder compared to that of macro-end milling due to the size effect and uncontrollable factors. The problem is much pronounced when workpiece material is a difficult-to-process material such as titani...
full textFinite Element Modeling To Predict the Effect of Nose Radius on the Equivalent Strain ( PEEQ ) for Titanium Alloy ( Ti - 6 Al - 4 V )
In present work, prediction the effect of nose radius, rz (mm) on the equivalent strain (PEEQ) and surface finish during the machining of titanium alloy (Ti-6Al-4V) through orthogonal cutting process. The results were performed at several of the nose radiuses, rz (mm) while the cutting speed, vc (m/min), feed rate, f (mm/tooth) and depth of cut, d (mm) were remained constant. The equivalent pla...
full textMy Resources
Save resource for easier access later
Journal title:
مهندسی مکانیک مدرسجلد ۱۵، شماره ویژه نامه -۱۳، صفحات ۱-۴
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023